State-Dependent Forecasting in Volatile Times

Isaac Baley UPF, CREi, BSE, CEPR **Javier Turén** PUC Chile

PUC - Rio September 11, 2025

Motivation

- Surveys of professional forecasters have become central
 - Central banks—guide monetary policy decisions
 - Economists—tests theories of expectations (rational vs. behavioral)
- Forecasts reflect not only beliefs, but also frictions:
 - √ Learning: process information and update models
 - √ Stability: avoid appearing erratic, write narratives for clients
 - √ Reputation: concerns about diverging from consensus

Reported forecasts \neq Actual Beliefs

- Volatile times may change forecasting behavior:
 - Are forecasts more or less stable?
 - Are forecasts more or less aligned with consensus?
 - Is the passthrough of shocks into forecasts weaker or stronger?

What We Do

- **Empirics:** In high volatility periods, forecast revisions are...
 - More frequent and larger
 - Less aligned with the consensus
- Theory: A model of state-dependent forecasts
 - Beliefs are rational and unbiased
 - Forecasts are shaped by fixed revision costs + strategic concerns
- Results: Volatility vs. Responsiveness
 - Volatility alone is not enough to explain data, shifts in frictions are essential
 - Jointly imply stronger pass-through of inflation shocks in volatile times

Contributions

Forecasting frictions

Revision costs
 Mankiw & Reis ('02), Andrade & Le Bihan ('13), Gaglianone et al ('22), Baley & Turen ('25)
 Strategic concerns
 Ottaviani & Sørensen ('06), Hansen, et al (14), Broer & Kohlhas ('22), Valchev & Gemmi ('23)

* We study interaction with inflation volatility

State-dependent expectations

Rational inattention
 Turen ('23), Pfäuti ('24), Joo Jo & Klopack ('25)

Diagnostic expectations
 Bordalo, Gennaioli, Ma & Shleifer ('20), Bianchi & Ilut ('25)

Policy-driven (unanchoring)
 Bonomo et al ('24)

* We offer an alternative view based on "rational inaction"

Pass-through in price-setting

- Increases with adjustment frequency Gopinath & Itskhoki ('10), Blanco, et al ('24), Cavallo et al ('24)

Increases with volatility
 Vavra ('14); Berger & Vavra ('19); Baley & Blanco ('19)

★ We show that these relationships also hold for expectations

Roadmap

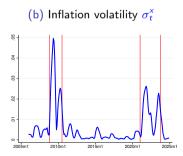
- 1. Facts on forecasting in volatile times
- 2. A model of state-dependent forecasts
- 3. Volatility vs. Responsiveness
- 4. Application: Pass-Through of Shocks

Data

CPI Inflation

- Year-on-year monthly inflation: $x_t = \frac{1}{12} [\log(cpi_t) \log(cpi_{t-1})]$
- Inflation volatility (rolling window): $\sigma_t^{x} = \frac{1}{18} \sqrt{\sum_{s=t}^{t-18} (x_s \mathbb{E}[x_s])^2}$
- Two volatility regimes:
 - ▶ low (2010-20, 2024)
 - ▶ high (2008-09, 2021-23) 50% increase

(a) YoY monthly inflation xt



Inflation forecasts

- Bloomberg's ECFC survey of professional forecasters
 - o 16 years (2008–2024)
 - Around 100 forecasters per year
- Fixed-event forecasting
 - Fixed event: annual inflation π_v

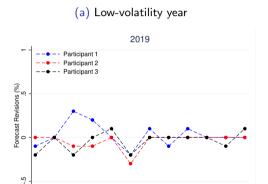
$$\pi_y = \log(\overline{cpi}_y) - \log(\overline{cpi}_{y-1}) \approx \sum_{m=1}^{12} x_{m,y}$$

• Forecast: $f_{h,v}^i$ by agent i, in year y, at horizon h

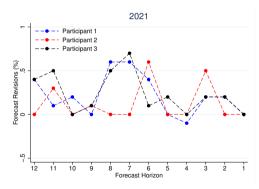
$$f_{h,y}^i = \underbrace{\mathcal{P}_{h,y}^i}_{\text{projection}} + \underbrace{\sum_{j=h+1}^{12} x_{j,y}}_{\text{observed realizations}}$$

Annual inflation π_y

Example with 3 forecasters



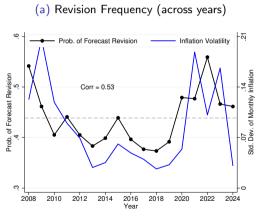
Forecast Horizon



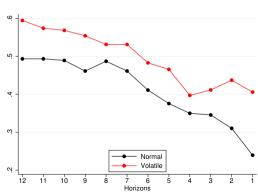
Facts on State-Dependent Forecasts

Fact 1: More frequent revisions in volatile times

• Frequency increases by 18% in volatile times (from 0.42 to 0.50)



(b) Revision Frequency (across horizons)

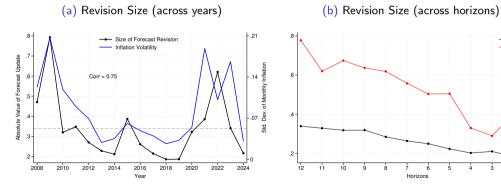


Notes: Controls for forecaster and horizon FE.

Notes: Normal= 2010-2020,2024. Volatile = 2008-09, 2021-23.

Fact 2: Larger revisions in volatile times

- Average size increases by 100% in volatile times (from 0.25 to 0.50)
 - Larger than the increase in fundamental volatility of 50%



Notes: Controls for forecaster and horizon FE.

Notes: Normal= 2010-2020,2024. Volatile = 2008-09, 2021-23.

Normal

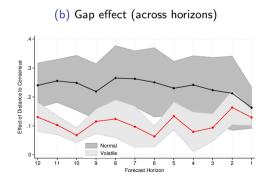
Fact 3: Less alignment with consensus in volatile times

• Effect of gap to consensus on probability of revision

$$Prob(\Delta f_h^i < 0) = \beta_0 + \beta_1(f_{h+1}^i - F_h) + controls$$

• Alignment decreases by 56% in volatile times (from 0.25 to 0.11)

(a) Gap effect (across years)



Recap of state-dependent forecasting

When inflation volatility σ_x rises:

- 1 Forecasts are revised more frequently
- 2 Revisions are larger
- 3 Alignment with consensus falls

Roadmap

1. Facts on forecasting in volatile times

2. A model of state-dependent forecasts

3. Volatility vs. Responsiveness

4. Application: Pass-Through of Shocks

Setup

• N forecasters i choose inflation forecast f_h^i to minimize sum of monthly losses

$$\min_{\{f_h^i\}_{h=12}^1} \ \mathbb{E}\Bigg[\sum_{h=12}^1 \underbrace{(f_h^i - \pi)^2}_{\text{accuracy}} + \underbrace{r} \underbrace{(f_h^i - F_h)^2}_{\text{strategic}} + \underbrace{\kappa \mathbb{1}_{\left\{f_h^i \neq f_{h+1}^i\right\}}}_{\text{stability}} \Bigg]$$

- End-of-year inflation: $\pi = \sum_{h=1}^{12} x_h \implies \hat{\pi}_h$ Details
 - AR(1) structure: $x_h = c_x + \phi_x x_{h+1} + \varepsilon_h^x$, aggregate risk $\varepsilon_h^x \sim \mathcal{N}(0, \sigma_x^2)$
 - Private signal: $\widetilde{x}_h^i = x_h + \zeta_h^i$, idiosyncratic noise $\zeta_h^i \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_{\zeta}^2)$
- Consensus: $F_h = N^{-1} \sum_{i=1}^N f_h^i \implies \hat{F}_h$
 - Restricted perceptions equilibria: $\hat{F}_h = \hat{F}_{h+1} + \epsilon_h^{\hat{F}}, \quad \epsilon_h^{\hat{F}} \stackrel{\text{iid}}{\sim} \mathcal{N}(0, \sigma_F^2)$
- Information set: $\mathcal{I}_h^i = \widetilde{x}_h^i \cup \mathcal{I}_h = \widetilde{x}_h^i \cup \{x_{h+1}, x_{h+2}, \dots, F_{h+1}, F_{h+2}, \dots\}$
- Uncertainty: $\Sigma_h \equiv \Sigma_h^{\pi} + r\sigma_F^2$

- A restricted perceptions equilibrium consists of
 - ightharpoonup a perceived consensus process \hat{F}_h given by a function g parametrized by (δ, σ_F)

$$\hat{F}_h = g(\hat{F}_{h+1}, \delta) + \epsilon_h^{\hat{F}}, \quad \epsilon_h^{\hat{F}} \sim_{i.i.d.} \mathcal{N}(0, \sigma_F^2)$$

- ▶ inflation beliefs $\{\hat{\pi}_h^i\}_{i,h}$ and forecasts $\{f_h^i\}_{i,h}$ for all agents i and horizons h such that
 - **1** Given perceived consensus \hat{F}_h , forecast policies $\{f_h^i\}_{i,h}$ are optimal
 - 2 (δ, σ_F) are such that prediction errors $\epsilon_h^F \equiv F_h g(F_{h+1}, \delta)$ satisfy:
 - $Cov[\epsilon_h^F, \epsilon_j^F] = 0$
 - $Var[\epsilon_h^F] = \sigma_F^2$

Recursive problem and optimal policy

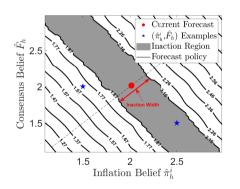
$$V_h(\hat{\pi}, \hat{F}, f) = \min\{\underbrace{V_h^I(\hat{\pi}, \hat{F}, f)}_{\text{inaction}}, \underbrace{V_h^A(\hat{\pi}, \hat{F})}_{\text{action}}\}$$

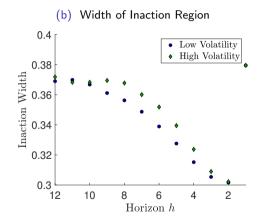
$$\mathcal{V}_{h}'(\hat{\pi}, \hat{F}, f) = \Sigma_{h} + (f - \hat{\pi})^{2} + r(f - \hat{F})^{2} + \mathbb{E}[\mathcal{V}_{h-1}(\hat{\pi}', \hat{F}', f) | \mathcal{I}] \\
\mathcal{V}_{h}^{A}(\hat{\pi}, \hat{F}) = \kappa + \Sigma_{h} + \min_{f^{*}} \left\{ (f^{*} - \hat{\pi})^{2} + r(f^{*} - \hat{F})^{2} + \mathbb{E}[\mathcal{V}_{h-1}(\hat{\pi}', \hat{F}', f^{*}) | \mathcal{I}] \right\}$$

- Optimal policy is horizon-dependent:
 - ▶ Inaction region: $\mathcal{R}_h \equiv \{(\hat{\pi}, \hat{F}, f) : \mathcal{V}_h^I(\hat{\pi}, \hat{F}, f) \geq \mathcal{V}_h^A(\hat{\pi}, \hat{F})\}$
 - Reset forecast: $f_h^*(\hat{\pi}, \hat{F})$
 - Previsions: $\Delta f_h = \begin{cases} 0, & \text{if } f \in \mathcal{R}_h \\ f_h^* f & \text{if } f \notin \mathcal{R}_h \end{cases}$

Inaction Region and Reset Forecast

(a) Inaction Region and Reset Forecast f_h^{i*}

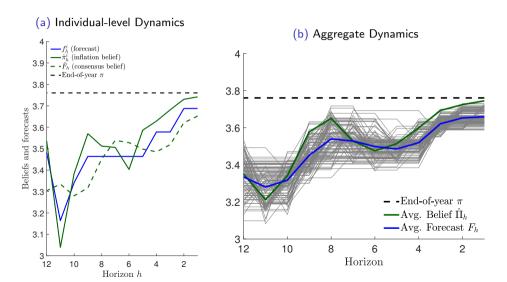




Different i

Different *r*

Beliefs and forecasts



Roadmap

- 1. Facts on forecasting in volatile times
- 2. A model of state-dependent forecasts
- 3. Volatility vs. Responsiveness
- 4. Application: Pass-Through of Shocks

Strategy

To study the role of volatility vs. responsiveness in shaping forecasts:

1 Discipline parameters $(\kappa, r, \sigma_{\zeta}, \sigma_{F})$ in low-volatility years

2 Keep all parameters constant, increase inflation volatility $\sigma_{x} \uparrow$

3 Reestimate parameters in high-volatility years

Baseline calibration ⇒ Match moments in low-volatility years

Inflation process

$$(c_x, \phi_x, \sigma_x) = (0.013, 0.932, 0.036)$$

Estimation Inflation

Calibration (low-volatility)

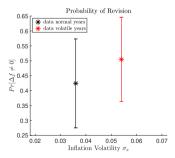
Parameter		Value	Moment	Data	Model
κ	adjustment cost	0.06	$Pr[\Delta f \neq 0]$	0.43	0.40
r	strategic concerns	0.73	$\mathbb{E}[\Delta f \mid adjust]$	0.25	0.19
σ_{ζ}	private noise	0.03	hazard slope	-0.04	-0.04
σ_F^2	consensus volatility	0.13	Internal Rationality	_	_

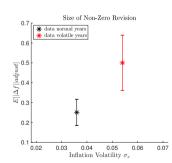
Microdata implies:

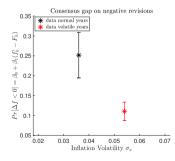
- * Stability: $\kappa > 0$
- * Strategic complementarity: r > 0
- \star Use of private information: $\alpha = \frac{\sigma_{\zeta}^{-2}}{\sigma_{x}^{-2} + \sigma_{\zeta}^{-2}} = 0.43$

How do moments change across volatility regimes?

- More frequent, larger, and misaligned revisions in volatile times
- Average across horizons h

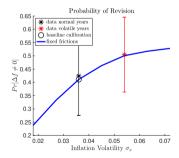


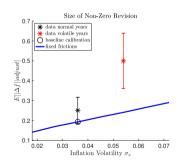


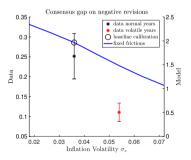


Does higher inflation volatility $(\sigma_x \uparrow)$ explain patterns?

- Keep baseline parameters and increase volatility
- Qualitatively explains empirical patterns, but it is not enough







Mechanisms driven by volatility

- Higher volatility σ_x has two effects on frequency:
 - **1 Volatility effect:** More volatile beliefs hit action threshold more often, *frequency* ↑
 - 2 Option effect: Inaction bands widen to save on revision costs, frequency \$\dpres\$

Volatility effect dominates ⇒ Increase in frequency Vavra (2014), Bachmann et al. (2019), Baley and Blanco (2019)

Wider inaction bands ⇒ Increase in revision size

Volatile calibration ⇒ Match moments in volatile times

Inflation process

$$(c_x, \phi_x, \sigma_x^2) = (0.011, 0.950, 0.054)$$
 Estimation Inflation

Calibration (volatile times)

	Value			Moment (Data / Model)		
Parameter	Normal	Volatile	Moment	Normal	Volatile	
κ	0.06	0.14	$Pr[\Delta f \neq 0]$	0.43 / 0.40	0.50 / 0.49	
r	0.73	-0.35	$\mathbb{E}[\Delta f \mid adjust]$	0.25 / 0.19	0.50 / 0.54	
σ_{ζ}	0.03	0.07	hazard slope	-0.04 / -0.04	-0.035 / -0.033	
$\sigma_{\zeta} \ \sigma_{F}^{2}$	0.13	0.32	Internal Rationality	_	_	

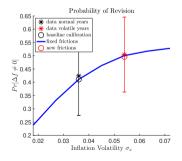
• In volatile times:

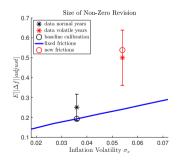
- ★ Fixed cost 6 doubles
- * Strategic complementarity r > 0 turns into substitutability: r < 0
- * Weight on private information falls: $\alpha = 0.37$

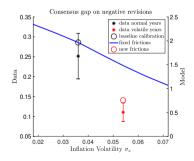
Volatility alone is not enough \rightarrow frictions also change

When reestimating frictions:

- Lower r compensates for higher κ and frequency is not affected (18% increase)
- Size increase is now correctly matched (100% increase)
- Alignment decreases ($\approx -60\%$)







Roadmap

- 1. Facts on forecasting in volatile times
- 2. A model of state-dependent forecasts
- 3. Volatility vs. Responsiveness
- 4. Application: Pass-Through of Shocks

Pass-Through of Shocks

- How shocks are incorporated into beliefs and forecasts?
- Our approach:
 - ► Inflation follows a reduced-form AR(1)

$$x_h = c_x + \phi_x x_{h+1} + \varepsilon_h^x$$

- Shocks $\varepsilon_h^{\mathsf{x}}$ capture any disturbance: monetary policy, demand, supply, or news.
- ▶ We stay agnostic about the source focus on the transmission.
- What we test:
 - Measure pass-through of ε_h^x into forecast revisions across normal vs. volatile regimes.

Pass-through of inflation shocks

- Let $P^h \equiv \frac{1-\phi_x^h}{1-\phi_x}$ and assume $\kappa=0$
- Forecast revision between *consecutive* horizons h and h + 1:

$$f_{h}^{i} - f_{h+1}^{i} = \frac{1}{1+r} \left[(z_{h} - z_{h+1}) + r \left(\hat{F}_{h} - \hat{F}_{h+1} \right) + (\nu_{h}^{i} - \nu_{h+1}^{i}) \right]$$

$$= \frac{1}{1+r} \left[P^{h} \alpha(\varepsilon_{h}^{x} + \zeta_{h}^{i}) + r \varepsilon_{h+1}^{F} + P^{h+1} ((1-\alpha)\varepsilon_{h+1}^{x} - \alpha \zeta_{h+1}^{i}) \right]$$

• Forecast revision between any horizons h and $h + \tau$:

$$f_h^i - f_{h+\tau}^i = \frac{1}{1+r} \left[P^h \alpha \underbrace{\left(\varepsilon_h^{\mathsf{x}} + \zeta_h^i\right)}_{\mathsf{shocks at } h} + \underbrace{r \sum_{j=1}^{\tau} \varepsilon_{h+j}^F}_{\mathsf{shocks at } h} + \underbrace{\sum_{i=1}^{h+\tau-1} P^{h+j} \varepsilon_{h+j}^{\mathsf{x}}}_{\mathsf{constant at } h} + \underbrace{P^{h+\tau} \left((1-\alpha) \varepsilon_{h+\tau}^{\mathsf{x}} - \alpha \zeta_{h+\tau}^i \right)}_{\mathsf{constant at } h} \right]$$

Pass-Through in the Model and Data

Pass-through of inflation shock at h:

$$\gamma(\sigma_{x}) \equiv \frac{\partial (f_{h}^{i} - f_{h+\tau}^{i})}{\partial \epsilon_{h}^{x}} = \frac{\alpha(\sigma_{x})}{1 + r(\sigma_{x})} P^{h}$$

- With higher inflation volatility σ_x:
 - (a) Bayesian weight on private signals $\alpha(\sigma_x) \downarrow$ (b) Strategic concerns $r(\sigma_x) \downarrow \downarrow$ $\Rightarrow \gamma(\sigma_x)$ increases by 75%

In the data, we estimate:

$$f_{h,t}^i - f_{h+\tau,t}^i = \gamma_0 + \gamma_1 \underbrace{\left(x_{h,t} - x_{h+1,t}\right)}_{c_x + (\phi^x - 1)x_{h+1} + \epsilon_h^x} + \text{controls} + \epsilon_{h,t}^i$$

 $\hat{\gamma}_1 = 0.733$ for normal and $\hat{\gamma}_1 = 1.447$ for volatile \Rightarrow a **68% increase**

Next Steps

Next Steps

- Today: Evidence of state-dependent professional forecasts that vary with inflation volatility
- Microfound state-dependent frictions
 - Writing and justifying narratives are costlier in volatile times $\Rightarrow \kappa'(\sigma_x) > 0$ Jiang, Pittman & Saffar ('21); Jung & Kim ('24), Lombardelli ('25)
 - Contests (winner-take-all publicity) pushes away from consensus in volatile times $\Rightarrow r'(\sigma_x) < 0$ Laster, Bennett & Geoum ('99); Lamont ('02); Ottaviani & Sørensen ('06)
- Transitions across volatility regimes
 - Quantitatively model regime shifts in volatility
- Differentiate shocks
 - Distinguish supply vs. demand (and policy) shocks in pass-through

Thank you!

jturen@uc.cl

isaac.baley@upf.edu

Inflation Volatility Regimes

• Regime identification robust to

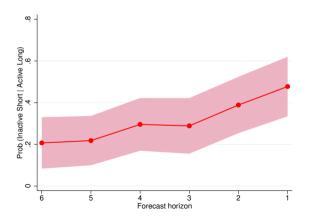
- 1 Realized vs. AR(1) Residual
- 2 Rolling window width: 12 vs. 18 months
- Stock and Watson

A preference for stability?

- Focus on horizon overlaps:
 - ► Long term revisions

$$f_{18}^i$$
 to f_{12}^i about π_{t+1}

- Short term revisions: f_6^i to f_1^i about π_t
- **Stability:** Actively revise long-term forecast, but keep short-term forecast



Heterogenous frictions?

- Strategic concerns (and other incentives) may differ across forecaster types
- Cross-sectional moments by type

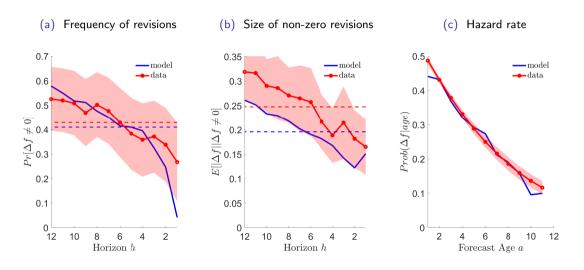
	Financ	ial Inst.	Ba	nks	Cons	ulting	Unive	rsities
Moment	Data	Model	Data	Model	Data	Model	Data	Model
$Pr[\Delta f \neq 0]$	0.45	0.40	0.38	0.37	0.47	0.49	0.34	0.35
$\mathbb{E}[\Delta f adjust]$	0.25	0.18	0.26	0.24	0.27	0.18	0.29	0.30
hazard slope	-0.05	-0.05	-0.02	-0.02	-0.05	-0.05	-0.01	-0.01
N		5,366		2,567		2,982		1,440

• Relative parameters by forecaster type, within group consensus

Parameter	Financial Inst.	Banks	Consulting	Universities
κ	1.00 (0.06)	1.08	0.94	1.29
r	1.00 (0.81)	0.62	0.89	0.50
σ_{ζ}	1.00 (0.04)	1.16	1.14	2.28
σ_F	1.00 (0.10)	1.13	1.08	1.33

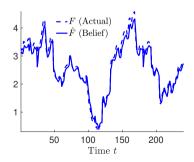
* Universities are the least strategic and the most lumpy

Term structure of revisions



Consistency of perceived vs. actual consensus (back)

- Perceived process: $\hat{F}_t = \hat{F}_{t-1} + \eta_t^{\hat{F}} \quad \eta_t^{\hat{F}} \sim_{i.i.d.} \mathcal{N}(0, 0.11^2)$
- Let $\eta_t^F \equiv F_t F_{t-1}$ be forecast errors of actual consensus under perceived process.
 - $ightharpoonup Cov[\eta_h^F,\eta_i^F]=0$ and $\mathbb{V}ar[\eta_h^F]=0.11^2$
- Dickey-Fuller tests cannot reject H_0 : F_t is a random walk



- We estimate (c_x, ϕ_x, σ_x) with a rolling structure.
- Average estimates (normal times): $\hat{c}_x = 0.013$, $\hat{\phi}_x = 0.932$ and $\hat{\sigma}_x = 0.036$
- Average estimates (volatile times): $\hat{c}_x = 0.011$, $\hat{\phi}_x = 0.950$ and $\hat{\sigma}_x = 0.054$.

Rolling Estimates AR(1) parameters

